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Abstract

A latent trait system is a set of subjects A, a set of items X, and a response
function » mapping Ax X into the real numbers. Numerical representations of
such a system map A and X into the reals, such that r is represented by a
numerical operation. It is shown for an additive latent trait system that its internal
structure may be characterized by its automorphism group and that homogeneity
and uniqueness of this group make the system ratio scalable. A non-additive case
is also considered. Here the two factors are combined in a non-additive way but
the system’s internal structure induces an independent system on one of the two
factors which is interval scalable.

Uniqueness Problems in Latent Trait Systems

Latent trait models have been introduced by Rasch (1960) and Birnbaum (1968) in
order to improve the theoretical foundations of psychometric measurement. A con-
sequence of this is that these models may be analyzed by measurement theoretic
methods for specifying rigorously a set of sufficient conditions for the existence of the
parameters and their uniqueness properties. Unfortunately there are three types of
uniqueness problems involved which have been confused in the past. The first one is
based on the fact that most measurement models do not define the homomorphisms
which map the empirical structure they deal with into a given numerical structure
uniquely. This is what is usually called the uniqueness problem in measurement the-
ory and its solution is the set of admissible transformations of a scale (Suppes &
Zinnes, 1963; Krantz, Luce, Suppes, & Tversky, 1971). The second type of uniqueness
question is how different but equally suitable numerical models for one and the same
empirical structure are related. This question is of less importance to measurement
theory, since the essential fact about any scale is that all suitable numerical represen-
tations are isomorphic and so are the corresponding sets of admissible transformations
(Krantz et al., 1971; Colonius, 1979). A measurement theoretic analysis of latent trait
models usually is based on response probabilities and this creates a third type of
uniqueness problem which is related to the statistical problem of how to estimate the
response probabilities and how the uniqueness of the estimates depends on properties
of a finite set of response data. This problem has been dealt with by Rasch (1960),
Andersen (1973), and Fischer (1981).

Statistical properties of a latent trait model, like the existence of sufficient statistics
for its parameters affect the statistical parameter estimation problem, but do not affect
its scale type. The scale type of a measurement model can be thought of as the limit
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of over-all uniqueness one can get with an ideal set of data, namely the response
probabilities.

This paper deals only with the first type of uniqueness question. Its main point
is to analyze the uniqueness of latent trait systems by using structural properties of
the response probabilities and not referring to numerical representations. This avoids
any confusion with the second type of uniqueness problem mentioned earlier. In fact,
several authors have confused the lack of uniqueness of homomorphisms into a fixed
numerical relational system with isomorphic mappings between different numerical
relational systems (Colonius 1979; Wottawa 1980; Roskam 1983) although others have
made rather clear that the second type of problem does neither affect the scale type
nor the set of meaningful statements which are possible with a given scale (Krantz et
al. 1971).

Statistical estimation problems are not addressed here, which means that we start
our analysis with a response function r which assigns a real valued number 7(a, z) to
every pair (a,x) of subject and item. The response function is assumed to be fixed
and derived from response probabilities, which do not have any nontrivial admissible
transformations.

DEerINITION 1. Let A and X be nonempty sets and let » be a mapping from Ax X
into the set of real numbers Re. Then £ = (Ax X, r) is called a latent trait system.

We first consider only strictly additive latent trait systems. This means that the
response function may be decomposed into independent components which are com-
bined in an additive manner. These systems may be called Rasch-type since they
essentially are equivalent to what has become known as the Rasch-model:

rla,z) = 6(a) — e(x). (1)

The existence of such an additive decomposition imposes structural restrictions on
the response function. These restrictions may be considered “empirical” properties

of a latent trait system which, given the response function, are empirically testable
(Hamerle & Tutz, 1980).

DEFINITION 2. A latent trait system £ = (Ax X, r) is called strictly additive indepen-
dent iff for all a, bin A and all z, y in X

r(a,z) = r(b,z) = r(a, y) - r(b,y). (2)

A latent trait system is additive decomposable in the sense of (1) iff it is strictly
additive independent (Hamerle & Tutz, 1980). Latent trait theory does not use strictly
additive representations of response probabilities directly, but uses mapping functions
which restrict their range to the interval [0, 1]. An example is the so called logistic
function L(z) = 1/(1+e~") which has been used by Rasch (1960). The representation
for response probabilities then is

1
1+ e—(0(a)—e(z)) "

(3)

pla,z) =

Since here the mapping function is specified explicitly and strictly monotone one may
invert it and get
pla,z)
In ———— =6(a) — €z).
- p(av $)
Transforming the response probabilities p by the inverse of the logistic creates a re-
sponse function which has an additive representation in the sense of (1). It is important



to note that the transformation also affects the empirical condition (2). In terms of
response probabilities condition (2) then becomes

pla,2) 1=p(b,x)  pla,y) 1=pby)
1—p(a,z) p(b,x) — 1-pla,y) ply)

Pfanzagl (1971), Hamerle (1979), and Fischer (1988) look at a representation which
is more general than (1):

r(a,z) = H[f(a) - e(x)], (4)

where H is some strictly monotone increasing function with appropriate domain.
Pfanzagl (1971) and Hamerle (1979) derive 6, ¢, and H from purely ordinal con-
straints on r which essentially form an additive conjoint measurement structure (Luce
& Tukey, 1964). This means that only ordinal information in r is used and that any
strictly monotone transformation of r results in an equivalent representation. However,
since the type of ordinal constraints used in additive conjoint measurement (“double
cancellation” or “quadruple condition”) is not suitable as a restriction in statistical
parameter estimation, these models are hard to apply in situations where response
probabilities cannot be estimated by relative frequencies.
Clearly, if H is invertible, then (4) implies the following generalization of (2)

G{H~'[r(a,2)], H~'[r(b,2)]} = G{H '[r(a,y)], H~[r(b, y)]}, (5)

with G(z,y) = @ — y. Fischer (1988) derives (4) from (5) for a more general class of
functions G. He also shows that if the response function values are stochastically inde-
pendent response probabilities and if GG is some function of the likelihood of a response
event involving the subjects a, b and the item 2, then H must be the logistic. This
also shows that whithin the latent trait framework (4) becomes empirically applicable
only if the function H is fixed and known. The reason simply is that for H unknown
(5) neither is empirically testable, nor is it useful as a side condition in parameter
estimation. An exception is H(z) = ca + d (Suppes & Zinnes, 1963; Fischer, 1988)
which makes (5) equivalent to (2), such that (4) and (1) are data egivalent in the sense
of Adams, Fagot, and Robinson (1965). The parameters ¢ and d are not identifyable
and thus may be set equal to 1 and 0 respectively without loss of generality.

In the following we ignore all problems related to statistical parameter estimation
and only look at latent trait systems with fixed and known response functions. These
are treated as the empirical basis for latent trait models in the same way as funda-
mental measurement theory treats “empirical” relational systems as empirical basis
for measurement. With this restriction, the uniqueness properties that will be derived
are properties that become effective only, if an actual set of data comes sufficiently
close to those properties of latent trait systems that will be required. In this sense
they describe the optimum degree of uniqueness one can get within a given latent
trait system.

Intrinsic Uniqueness

The following presentation applies methods for characterizing the scale type of a mea-
surement structure which have been developed by Narens (1985). These methods are
not based on numerical representations but make it possible to characterize the scale
type of a latent trait system by using only its intrinsic primitives.

Our analysis is based on a special type of automorphisms of a latent trait system
L = (AxX,r), which generally are one-to-one mappings ¢ from Ax X onto itself such
that r[((a,z)] = r(a,2). This is similar to what Roberts and Rosenbaum (1988/89)



call “tight value automorphisms” in the context of finite weak orderings with an addi-
tional binary relation (“valued digraphs”). This terminology is slightly different from
the one used by Narens (1985). He looks at automorphisms which preserve relations
like 7(a,z) > r(b,y) iff r[((a,x)] > r[C(b,y)]. Since latent trait systems are based on
real valued functions we have to use value preserving automorphisms. We simply use
the term automorphisms but keep in mind that these mappings not only preserve re-
lations but values. We use the term order automorphism for denoting the conventional
automorphisms which preserve relations.

The following concept has been introduced by Luce and Cohen (1983). They look
at automorphisms of conjoint structures, which strongly resemble latent trait systems.
The difference is that conjoint structures have an empirical ordering relation as their
basic primitive, while latent trait systems have a response function.

DEFINITION 3. Let £ = (AX X, r) be a latent trait system. An automorphism ¢ of £
is factorizable iff there exist one-to-one functions a from A onto itself and £ from X
onto itself, such that for all @ in A and all z in X ((a,z) = (a(a),£(2)). The functions
a and £ will be denoted component transformations induced by (.

We use M to denote the set of all factorizable automorphisms of a latent trait
system £ and M 4 and M x for the induced component transformations on A and X
respectively.

LEmMMA 1. Let £ = (AxX,r) be a latent trait system, M its set of factorizable auto-
morphisms and M 4 and M x its respective sets of induced component transformations.
Then with function composition M, M 4, and Mx are groups.

Proof. The proof closely follows the proof of Lemma 1 of Luce and Cohen (1983).
Let ta, tx, and ¢ = (14,tx) be the identity maps on A, X, and AxX respec-
tively. Then these are the identities of the three groups. Let (a, &) be in M, then
(0,671 = (a7, €71 also is in M, since r(a'(a),¢ Y (z)) # r(a, ) leads to the
contradiction r(a™(a(a)),71(&(x))) # r(a,z). From associativity for function com-
position it follows that M, M4, and M x are groups. O

In order to characterize the structural properties of a latent trait system, we use
its automorphism group. Two properties have turned out to be especially useful: ho-
mogeneity and uniqueness.

DEFINITION 4. Let £ = (Ax X, r) be alatent trait system. Its group M of factorizable
automorphisms is 1/2-point homogenous on A iff for any a, b in A there exists a
factorizable automorphism (a, &) in M such that a(a) = b. M is 1/2-point unique
on A iff for all @ in A and for all factorizable automorphisms (a, ), (o/,£') in M
the condition a(a) = o'(a) implies that (o, &) = (a/,£’). Analog definitions may be
given for 1/2-point homogenous on X and 1/2-point unique on X. L will be called
1/2-point homogenous and 1/2-point unique iff the respective properties hold for both
components simultanously.

In order to use automorphisms to characterize the structural properties of latent
trait systems, we have to make sure that any of them exist. This means that we
have to assume infinite sets of subjects and items, since our systems essentially are
ordered (Def. 7). One way to construct an automorphism on a latent trait system is
via inverting the response function.



DEFINITION 5. A latent trait system £ = (AxX,r) is called invertible iff for every
fixed 2 in X the function f.(a) = r(a,z) and for every fixed a in A the function
fa(z) = r(a,z) is a one-to-one function from A and X respectively into Re such that
for every s in r(Ax X)) the inverse f!(s) is a unique element a in A and the inverse
[ Y(s) is a unique element z in X.

THEOREM 1. Let L = (AXX,r) be a latent trait system and let M be its group of
factorizable automorphisms. If L is invertible then M is 1/2-point unique.

Proof. Suppose both {(a,£) and (o/,¢’) are in M and a(a) = o/(a) = b for some a
in A. Then r(b,&(x)) = r(b,&'(x)) and it follows from invertibility that £ = ¢&'. By
invertibility in A we then get @ = o' and thus (a,£) = (o, &’). This shows 1/2-point
uniqueness on A. 1/2-point uniqueness on X may be shown in the same way. O

This theorem shows that if a latent trait system L is invertible then its set of
factorizable automorphisms is 1/2-point unique. This result is closely related to The-
orem 12 of Luce and Cohen (1983). They show that the group of factorizable order
automorphisms of conjoint structures which are order independent and unrestrictedly
solvable either satisfies 1- or 2-point uniqueness (Def. 8).

Theorem 1 also shows that for invertible systems we have to look at the homo-
geneity properties of the automorphism groups. Note that the degree of homogeneity
(uniquenes) of a group of automorphisms is the largest (smallest) n, such that it is
n-point homogenous (unique), given such a n exists. If such a n does not exist then
the degree of homogeneity (uniqueness) is said to be oco. Also, remember that for any
group of automorphisms with a finite degree of uniqueness the degree of homogeneity
is less than or equal to its degree of uniqueness (Narens, 1985).

Up to now we have not used condition (2). Going to additive systems means to use
real addition as an operation for combining the two factors of a latent trait system. We
therefore need a stronger version of invertibility in order to define the corresponding
automorphisms in our system.

DEFINITION 6. A latent trait system £ = (AxX,r) is called A-solvable iff for any
fixed z in X and any real number s there exists a unique @ in A such that r(a,z) = s.
X-solvability is defined in an analogous way. L is solvable iff it is A- and X -solvable.

THEOREM 2. Let L = (AxX,r) be a solvable latent trait system which is strictly
additive independent and let M be its group of factorizable automorphisms. Then M
is 1/2-point homogenous and 1/2-point unique.

Proof. Let a’ and b’ be in A and define a(a’) = o’. Then by strict additive independence
ko = r(a(d),z) — r(d, z)

is independent of z. For all @ in A define a(a) as the solution to
rla(a),z) — r(a,z) =k,

which again is independent of z. Then define £ on X as the solution of
r(a,§(z)) —r(a,x) = —kq

for some a in A and note that by strict additive independence £ is independent of
a. Then clearly (a,&) is factorizable. It also is an automorphism of £ because by



definition

r(afa),&(z)) = r(afa),z) - kq
(r(a,z) + ko) — ko

= r(a,z).

This shows that M is 1/2-point homogenous on A. 1/2-point homogeneity on X may
be shown in the same way. 1/2-point uniqueness of £ follows from Theorem 1. O

The proof of Theorem 2 shows what the automorphisms of a strictly additive latent
trait system look like. They have the form

a(a) = f71(fo(a) + ko).

An equivalent form has been derived by Colonius (1979) for showing that each member
of the automorphism group of any representation of a strictly additive independent
latent trait system of the form

r(a,z) = Fl0(a),{(2)]

with F strictly increasing in the first and strictly decreasing in the second argument
may be characterized by a single parameter. Theorem 2 leads to an equivalent con-
clusion, but does not refer to any representation at all. It thus shows that 1/2-point
uniqueness and 1/2-point homogeneity are intrinsic properties of a strictly additive
latent trait system and are not imposed on it by the selection of a special represen-
tation as has been claimed, among others, by Colonius (1979), Wottawa (1980), and
Roskam (1983).

Component Structures

The Additive Case

Factorizable automorphisms are especially useful for looking at component structures
of latent trait systems. Let £ = (AxX,r) be a solvable latent trait system which
satisfies strict additive independence and let M be its group of factorizable automor-
phisms. Choose z from X and define a function é on Ax A by

6(a,b)=r(a,z)—r(b,z). (6)

Then 6 is independent of z by strict additive independence and the set of component
transformations M 4 is the automorphism group of the system (A, §):

8(afa),a(b)) = r(ala), )= r(a(b), )

(

r(

rla,z)—r(b,z)
= 6(a,b).

We need some more definitions for looking at the homogeneity and uniqueness
properties of component structures.

DEFINITION 7. A latent trait system £ = (AxX,r) is called ordinal independent in
Aiff for all @, bin A and all z, y in X

rla,z) > r(b,z) iff r(a,y)>r(b,y). (7)



Note that strict additive independence implies ordinal independence in A. Ordinal
independence in A is sufficient to define a relation =4 on A by

arab iff r(a,2)>r(b,z) (8)
for some # in X, such that (A4, > 4) is a weak order.

DEFINITION 8. Let £ = (A, = 4,7) be a system, where A is a set, (A, = 4) is a weak
order, and r, for some finite k, is a mapping from A* into Re, and let M be a subgroup
of the automorphisms of £. M satisfies n-point homogeneity iff for any a4, ..., a, and
b1, ..., b, in A, which satisfy a1 >4 --- >4 a, and by =4 --- =4 b,, there exists
an automorphism a in M such that a(a;) = b;, for i = 1, ..., n. M satisfies n-point
uniqueness iff for all o, 8 in M and aq, ..., a, in A with a1 >4 -+ >4 a, the
condition a(a;) = B(a;), fori = 1, ..., n implies that o = 3.

It is easy to show that the automorphism group of the system (A,d) which has
been defined earlier is 1-point homogenous and 1-point unique and thus (A, d) is ratio
scalable. Since é also is independent of X it allows specifically objective ratio scale
comparisons of subjects (Irtel, 1987).

A Nonadditive Case

In this section we look at a latent trait system which preserves many of the properties
of strict additivity but does this only for one of the two components. Such a system
has been introduced by Birnbaum (1968). Its main difference to a strictly additive
system is that invariant quantitative statements about subjects involve three of them.
This is a common situation with interval scales where ratios of intervals are invariant
under admissible transformations.

DEFINITION 9. A latent trait system £ = (AxX,r) is called affine independent in A
iff for all @, b, ¢cin A and all z, ¥ in X whenever the expressions are defined

T(av $) — T(bv $) _ T(av y) — T(bv y)
r(e,x)—r(b,z)  r(c,y)—r(b,y)
Note that affine independence in A implies ordinal independence in A (7). Thus

it also allows the definition of a weak order (A, > 4) which is independent of X. So
Def. 8 may be applied also.

(9)

THEOREM 3. Let L = (AXX,r) be a latent trait system, affine independent in A and
A-solvable. Let M 4 be the set of component transformations o on A which satisfy

r(a(a), ) —r(a(b),x)  r(a,z)—r(b,z)
r(a(e),z)—r(a(b),z)  r(c,z)—r(b,2) (10)

for all a, b, ¢ in A and x in X, whenever the expressions are defined. Then, under
Sfunction composition, M 4 is a group, is 2-point homogenous, and 2-point unique.

Proof. Showing that M4 is a group is left to the reader. We show 2-point homogeneity.
Let a, b, ¢’, and b’ be four elements of A with a =4 b and a’ >4 b'. Define a(a) = @’
and a(b) = b'. Then let k, be defined by

r(a,a)—rb, )

Fa r(a,z)—r(b,z)’




Note that because of affine independence in A the constant k, does not depend on x.
Then extend a on all of A by defining a(c¢) for all ¢ in A as the solution to

r(afc),x) = kolr(e, ) = r(b, )] + r(V, x).
We have to show that a is an element of M 4. By definition we have

rla(c),z) — (b, x)
r(e,z)—r(b,z)

ra’,z) — (b, x)
r(a,z)—r(b,z)’

ke =

This implies that o is in My, since ¢’ = a(a) and ' = «(b). Thus M4 is 2-point
homogenous, since the choice of a, b, o/, and &’ was arbitrary. It remains to show that
M 4 is 2-point unique. Suppose we have two transformations of M 4, a and 3, which
coincide at two points ¢ and b. It immediately follows from (10) that o and 3 also
coincide at any other point ¢ in A: From

r(a(a),z) — r(a(b),z) _ rla,z)—r(b,z)
rla(c),z) — r(a(b)x) r(e,z) —r(b,z)
— T(ﬁ(a)vx)_r(ﬁ(b)vx)
T(ﬁ(c)v x) - T(ﬁ(b)v x)
_ rle(e),z) = r(afb), z)
r(B(c),z) — r(a(b), z)
we get 7(a(c),x) = r(B(c), ) which implies a(c) = f(c¢) by A-solvability. |

Affine independence corresponds to the Birnbaum-model (Birnbaum, 1968). It
induces a 3-argument function

b,c)= 11
onboe) = RO (1)
on A which is independent of X. Theorem 3 shows that the automorphism group of
the induced system (A, ) is 2-point homogenous and 2-point unique. Thus the system
is interval scalable.
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